Непосредственный впрыск в камеру сгорания. что это и для чего он нужен?

Непосредственный впрыск

Схема двигателя Volkswagen FSI с непосредственным впрыском бензина

Первые системы впрыска бензина непосредственно в цилиндры двигателя появились еще в первой половине ХХ в. и использовались на авиационных двигателях. Попытки применения непосредственного впрыска в бензиновых двигателях автомобилей были прекращены в 40-е годы ХХ в., потому что такие двигатели получались дорогостоящими, неэкономичными и сильно дымили на режимах большой мощности. Впрыскивание бензина непосредственно в цилиндры связано с определенными трудностями. Форсунки для непосредственного впрыска бензина работают в более сложных условиях, чем те, что установлены во впускном трубопроводе. Головка блока, в которую должны устанавливаться такие форсунки, получается более сложной и дорогой. Время, отводимое на процесс смесеобразования при непосредственном впрыске, существенно уменьшается, а значит, для хорошего смесеобразования необходимо подавать бензин под большим давлением.
Со всеми этими трудностями удалось справиться специалистам компании Mitsubishi, которая впервые применила систему непосредственного впрыска бензина на автомобильных двигателях. Первый серийный автомобиль Mitsubishi Galant с двигателем 1,8 GDI (Gasoline Direct Injection — непосредственный впрыск бензина) появился в 1996 г.
Преимущества системы непосредственного впрыска заключаются в основном в улучшении топливной экономичности, а также и некоторого повышения мощности. Первое объясняется способностью двигателя с системой непосредственного впрыска работать на очень бедных смесях. Повышение мощности обусловлено в основном тем, что организация процесса подачи топлива в цилиндры двигателя позволяет повысить степень сжатия до 12,5 (в обычных двигателях, работающих на бензине, редко удается установить степень сжатия свыше 10 из-за наступления детонации).

Форсунка двигателя GDI может работать в двух режимах, обеспечивая мощный (а) или компактный (б) факел распыленного бензина

В двигателе GDI топливный насос обеспечивает давление 5 МПа. Электромагнитная форсунка, установленная в головке блока цилиндров, впрыскивает бензин непосредственно в цилиндр двигателя и может работать в двух режимах. В зависимости от подаваемого электрического сигнала она может впрыскивать топливо или мощным коническим факелом, или компактной струей.

Поршень двигателя с непосредственным впрыском бензина имеет специальную форму (процесс сгорания над поршнем)

Днище поршня имеет специальную форму в виде сферической выемки. Такая форма позволяет закрутить поступающий воздух, направить впрыскиваемое топливо к свече зажигания, установленной по центру камеры сгорания. Впускной трубопровод расположен не сбоку, а вертикально сверху. Он не имеет резких изгибов, и поэтому воздух поступает с высокой скоростью.

В работе двигателя с системой непосредственного впрыска можно выделить три различных режима:
1) режим работы на сверхбедных смесях;
2) режим работы на стехиометрической смеси;
3) режим резких ускорений с малых оборотов;
Первый режим используется в том случае, когда автомобиль движется без резких ускорений со скоростью порядка 100–120 км/ч. На этом режиме используется очень бедная горючая смесь с коэффициентом избытка воздуха более 2,7. В обычных условиях такая смесь не может воспламениться от искры, поэтому форсунка впрыскивает топливо компактным факелом в конце такта сжатия (как в дизеле). Сферическая выемка в поршне направляет струю топлива к электродам свечи зажигания, где высокая концентрация паров бензина обеспечивает возможность воспламенения смеси.
Второй режим используется при движении автомобиля с высокой скоростью и при резких ускорениях, когда необходимо получить высокую мощность. Такой режим движения требует стехиометрического состава смеси. Смесь такого состава легко воспламеняется, но у двигателя GDI повышена степень сжатия, и для того чтобы не наступала детонация, форсунка впрыскивает топливо мощным факелом. Мелко распыленное топливо заполняет цилиндр и, испаряясь, охлаждает поверхности цилиндра, снижая вероятность появления детонации.
Третий режим необходим для получения большого крутящего момента при резком нажатии педали «газа», когда двигатель работает на малых оборотах. Этот режим работы двигателя отличается тем, что в течение одного цикла форсунка срабатывает два раза. Во время такта впуска в цилиндр для его охлаждения мощным факелом впрыскивается сверхбедная смесь (α=4,1). В конце такта сжатия форсунка еще раз впрыскивает топливо, но компактным факелом. При этом смесь в цилиндре обогащается и детонация не наступает.
По сравнению с обычным двигателем с системой питания с распределенным впрыском бензина, двигатель с системой GDI примерно на 10 % экономичнее и выбрасывает в атмосферу на 20 % меньше углекислого газа. Повышение мощности двигателя доходит до 10 %. Однако, как показала эксплуатация автомобилей с двигателями такого типа, они очень чувствительны к содержанию серы в бензине. Оригинальный процесс непосредственного впрыска бензина разработала компания Orbital. В этом процессе в цилиндры двигателя впрыскивается бензин, заранее смешанный с воздухом с помощью специальной форсунки. Форсунка компании Orbital состоит из двух жиклеров, топливного и воздушного.

Работа форсунки Orbital

Воздух к воздушным жиклерам поступает в сжатом виде от специального компрессора при давлении 0,65 МПа. Давление топлива составляет 0,8 МПа. Сначала срабатывает топливный жиклер, а затем в нужный момент и воздушный, поэтому в цилиндр, мощным факелом впрыскивается топливно-воздушная смесь в виде аэрозоля.
Форсунка, установленная в головке цилиндра рядом со свечой зажигания, впрыскивает топливно-воздушную струю непосредственно на электроды свечи зажигания, что обеспечивает ее хорошее воспламенение.

Конструктивные особенности двигателя с непосредственным впрыском бензина Audi 2.0 FSI

Непосредственный впрыск в камеру сгорания. Что это и для чего он нужен?

Для водителей-новичков, понять, что представляет из себя непосредственный впрыск в камеру сгорания – задача не из простых. Порою даже непосильная. Ведь, если у человека не технический склад ума, то быстро разобраться в подобных тонкостях системы не представляется возможным. И все же, давайте вместе попытаемся представить функционирование данной модификации мотора: что для нее характерно, чем отличается от просто инжекторной или, допустим, от карбюраторной?

Непосредственный впрыск в камеру сгорания впервые появляется на Mercedes-Benz 1954-ого года рождения. Однако большую известность такого рода способ получает с использованием в движках фирмы Mitsubishi. В Японии моторы назывались GDI – Gasoline Direct Injection. Так знаменитые «ДжеДАи» (как их ласково окрестили народные умельцы-мастера на СТО) начали победное шествие по многим странам земного шара, заткнув за пояс некоторые иные модели. И по сей день многие известные бренды используют в конструкциях своих моделей двигателей непосредственный впрыск (кстати, у разных фирм он называется по-разному, но суть – одно и то же).

Содержание

Основные особенности

В чем же заключаются основные принципы работы подобных систем? Во-первых, топливо здесь впускается прямо в цилиндры. Однако этот факт не является только лишь одним отличием от впрыска распределительного. Еще GDI имеет обычно целых 2 топливных насоса.

Читать еще:  Замена рулевой рейки на ваз 2110 и 2112. легкий способ

Первый из них обитает в баке с топливом (как обычный электрический насос на других моделях), а второй – высокого давления – как правило, располагается на движке.

Топливо приходит на сжатии в сам цилиндр, что требует богатырских усилий. Вот эти необходимые усилия и прилагает второй бензонасос высокого давления. А оно порой добирает свыше 100 бар!

Имеют при таком давлении свои особенности и форсунки – в виде установленных уплотнительных колец из тефлона, способных противостоять экстримам. Еще одна отличительная особенность: при обычном впрыске в сам цилиндр поступает готовая топливная смесь, а в GDI — топливо с воздухом идут отдельно и миксуются уже непосредственно в цилиндрах. Причем, смесь образуется здесь несколькими способами: послойно, а также – однородно. А смотря по нагрузке, мотор может переключаться то на одну, то на другую систему смесеобразования.

Послойное образование топливной смеси

При послойной системе образования смеси происходят следующие процессы. Поскольку коллектор делится на части (есть заслонки, закрывающие низы), перекрывается доступ к низу.

Воздушные массы приходят только лишь вверх и крутятся в цилиндрах (это происходит на впуске). Поршень далее проходит вниз, и топливный впрыск происходит уже на фазе при сжатии (для того и необходимо повышенное давление). Перед самим моментом образования искры идет впрыск топлива, и его сносит воздушным вихрем на свечу.

В момент возникновения искры, впрыснутый бензин будет в воздушном облаке. Там он и сгорает, окруженный воздухом. Воздушная образующаяся прослойка значительно снижает потери, создавая своеобразный защищающий слой. Растет при этом и КПД движка, а расход бензина – снижается.

Однородное образование смеси

Здесь все выглядит значительно проще. Топливо и воздух впрыскиваются практически одновременно (на такте впуска). Когда поршень поднимается вверх, топливно-воздушная смесь уже успевает перемешаться как следует. Но и здесь, поскольку впрыск идет под высоким давлением, образование смеси позволяет принимать большое количество воздуха.

Что также приводит к определенной экономичности. Одно из достоинств системы – способность при помощи анализа данных осуществлять переключение с одного режима на другой, что в результате приводит к существенной экономии бензина и улучшению динамики моторного отсека.

Размышляя о сути вопроса в целом и сопоставляя данные, с уверенностью можно сказать одно: непосредственный впрыск в камеру сгорания – система гораздо более современная и перспективная, чем впрыск с распределением. При меньших тратах бензина характеристики движка улучшаются существенно. Жаль только, что на постсоветском пространстве многие потенциальные покупатели пугаются подобной системы впрыска. Наверное, такая ситуация связана в первую очередь с рассказами о высоких требованиях, предъявляемых системой к качеству бензина и дороговизной ремонта и обслуживания GDI.

Nav view search

ЭЛЕКТРОСХЕМЫ НА ВСЕ АВТОМОБИЛИ МИРА НА Portal-Diagnostov.ru

Примеры работ

Установка Диодной подсветки, Цветомузыки. Дискотека на БОРТУ

Полезная информация

Global Statistic

Как это работает?

Навигация

Обучение диагностике

Камеры сгорания

Форма камеры сгорания влияет на качество процесса сгорания и соответственно на мощность и параметры ОГ дизеля. Благодаря форме камеры сгорания при движении поршня в цилиндре топливовоздушная смесь может завнхряться, перемешиваться или вытесняться из цилиндра, что необходимо для равномерного распределения жидкого топлива или парожидкостных струй в камере сгорания.
Для рабочих процессов используются:
• неразделенная камера сгорания для двигателей с непосредственным впрыском топлива в цилиндр (Direct Injection Engine);
• разделенная камера сгорания (Indirect Injection Engine).

Количество дизелей с непосредственным впрыском топлива все возрастает. У них меньше расход топлива (экономия составляет до 20%), но вышеуровень шума сгорания (прежде всего, при разгоне). Правда, используя предварительное впрыскивание небольшой дозы топлива, можно снизить уровень шума до величины, характерной для двигателей с разделенными камерами. Последние сегодня практически уже не
проектируются.

Неразделенная камера сгорания

Двигатели с непосредственным впрыском топлива (рис. 1) имеют более высокий КПД и работают экономичнее, чем двигатели с разделенными камерами, поэтому они используются на всех грузовых автомобилях и на большинстве новых легковых автомобилей.

Рис.1
1. Многострунный распылитель
2. ‘ / образная выемка в поршне
3. Штифтовая свеча накаливания

При непосредственном впрыске топливо сразу попадает в камеру сгорания 1 с ш-образной выемкой 2, находящейся в поршне, поэтому распылнвание, нагрев, испарение и смешивание топлива с воздухом должны быстро следовать друг за другом. При этом предъявляются высокие требования к подаче не только топлива, но и воздуха. Во время тактов впуска и сжатия в цилиндре благодаря специальной конструкции впускного канала в головке блока цилиндров возникает воздушный вихрь. Форма камеры сгорания также способствует вихревому движению воздуха в конце хода сжатия (т. е. к началу впрыскивания). Из различных видов выемок в поршне, образующих камеру сгорания, в разное время применявшихся при создании дизелей, в настоящее время широкое применение нашла ц-образная выемка в поршне. Топливо должно вводи 1Ы.И и камеру сгорания таким образом, чтобы, равномерно распределяясь по объему камеры, оно могло быстро перемешиваться с воздухом. Для этого, в отличие от дизеля с разделенными камерами сгорания, где используется форсунка со штифтовым распылителем, при непосредственном впрыске топлива применяется форсунка с многоструйным распылителем 1. Распространение его топливных факелов должно быть оптимизировано и согласовано с параметрами камеры сгорания. Давление впрыскивания при непосредственной подаче топлива очень высокое (до 2000 бар).
На практике при непосредственном впрыске применяются два способа интенсификации смесеобразования:
• за счет целенаправленного движения воздуха;
• за счет впрыска топлива — без использования движения воздуха.

Во втором случае отсутствуют затраты энергии на завихрение воздуха на впуске, что уменьшает потери на газообмен и улучшает наполнение цилиндра. Использование этого способа, однако, предъявляет повышенные требовании к расположению и количеству отверстии в распылителе форсунки, а также к тонкости распыливання топлива, что определяется диаметром отверстии распылителя. Кроме того, для достижения малой продолжительности впрыскивания и хорошего распыликания топлива необходимо очень высокое давление впрыска.

Разделенная камера сгорания

Дизели с разделенными камерами сгорания долгое время имели преимущества по сравнению с системой непосредственного впрыска топлива по шумностн работы и уровню содержания вредных веществ в ОГ. Их повсеместно применяли на легковых и легких грузовых автомобилях. Сегодня, благодаря высокому давлению впрыскивания электронному регулированию работы дизеля и дополнительному предварительному впрыскиванию топлива, двигатели с непосредственным впрыском достигли сопоставимых параметров.

Различают два процесса смесеобразования с разделенной камерой сгорания:
• предкамерный (форкамерный);
• вихрекамерный.

Предкамерный процесс

При предкамерном процессе топливо впрыскивается в горячую предварительную камеру 2 (рис.2),расположенную в головке блока цилиндров. При этом впрыскивание осуществляется форсункой 1 со штифтовым распылителем под относительно низким давлением (до 450 бар). Отражающая поверхность 3, находящаяся в середине камеры, разбивает струю топлива и интенсивно смешивает ее с воздухом.

Читать еще:  Как прокачать амортизаторы перед установкой? подробная инструкция

Рис.2
1. Форсунка оо шгифтовым распылителем
2. Предварительная камера
3. Отражающая поверхность
4. Соединительный канал
5. Штифтовая свеча накаливания

Во время сгорания в предкамере частично сожженная топливовоздушная смесь, нагреваясь, через отверстие в нижней части предкамеры вытесняется в основную камеру сгорания над поршнем. Здесь она интенсивно перемешивается с воздухом, также поступившим к этому моменту в основную камеру, и сгорает окончательно. Короткая задержка воспламенения и управляемое тепловыделение приводят к «мягкому» сгоранию смеси с низким уровнем шума и малыми нагрузками на д е ы л и дыгателем. Измененная форма предкамеры с выемкой для испарения топлива, а также специальная форма и положение отражающей поверхности (сферический ш гифт) придают потоку воздуха, который устремляется при сжатии из цилиндра в предкамеру, определенное вихрение. Топливо впрыскивается по направлению движения воздуха под углом 5° к оси предкамеры. Чтобы не нарушать процесс сгорания, свеча 5 накаливания устанавливается таким образом, чтобы ее «обтекал» поток топливовоздушной смеси, движущийся в основную камеру сгорания. После пуска холодного двигателя свеча накаливания еще продолжает управляемый нагрев, длящийся до 1 мин (в зависимости от температуры охлаждающей жидкости), что способствует улучшению состава ОГ и уменьшению шума профетого двигателя. Соотношение объемов предкамеры и основной камеры сгорания составляет от 1:3 до 2:3.

Вихрекамерный процесс

При этом процессе сгорание начинается в отдельной вихревой камере шаро- или дискообразной формы, которая заключает в себе почти весь объем камеры сжатия. Из нее тангенциально направленный соединительный канал 2 (рис. 3) ведет в цилиндр.

Рис. 3
1. Форсунка
2. Тангенциально направленный соединительный клапан
3. Штифтовая свеча накаливания

Во время такта сжатия входящий через канал воздух совершает движение в виде вихря, в который впрыскивается топливо. Положение форсунки 1 выбирается таким образом, чтобы факел топлива пересекал вихрь перпендикулярно его оси и попадал на противоположную сторону камеры в наиболее нагретую зону. С началом сгорания топливовоздушная смесь вытесняется через канал в цилиндр и смешивается с имеющимся там воздухом. При процессе сгорания в вихревой камере потери на газообмен меньше, чем в случае с предкамерой, так как сечение соединительного канала здесь больше. Это приводит к снижению потерь энергии на дросселирование, увеличению КПД и снижению расхода топлива. Тем не менее уровень шума сгорания при этом выше, чем при предкамерном процессе.
Важно чтобы смесеобразование по возможности более полно происходило в вихревой камере. Ее конфигурация, расположение и форма топливного факела, а также расположение свечи накаливания должны быть тщательно согласованы, чтобы на всех режимах обеспечить хорошее смесеобразование.

Следующее требование — быстрый разогрев вихревой камеры после холодного пуска. Этим сокращается задержка воспламенения и снижается уровень шума сгорания, а на прогретом двигателе в ОГ отсутствуют нссгоревшне углеводороды (сизый дым).

При непосредственном впрыске с разбрызгиванием топлива на стенку камеры в поршне (М-процесс)* у дизелей грузовых автомобилей и стационарных установок, а также многотопливных двигателей однофакельная (были и двухфакельные. — Ред.) форсунка впрыскивает топливо под невысоким давлением целенаправленно на стенку камеры сгорания. Здесь топливо испаряется и уносится воздухом.
Таким образом, при М-процессе тепло камеры служит для испарения топлива. При правильном согласовании движения воздуха в камере сгорания можно достичь гомогенности топливовоздушной смеси с плавным повышением давления, продолжительным и * процесс разработан фирмой MAN бесшумным сгоранием. Из-за большего расхода топлива по сравнению с современным процессом непосредственного впрыска, использующим распределение топлива в объеме, М-процесс сегодня уже не применяют.

Как работает непосредственный (прямой) впрыск топлива и чем он лучше?

Если Вы читали статью о том, как работает двигатель, то знаете, что бензиновые двигатели работают, высасывая смесь бензина и воздуха в цилиндр, сжимая его поршнем, когда тот движется вверх, и поджигая его искрой от свечи зажигания; в результате взрыва происходит сильное увеличение давления в камере сгорания, что приводит к движению поршня вниз, производя энергию — в конечном счёте вращательную.

Традиционная (непрямая) система впрыска топлива предварительно смешивает бензин и воздух в камере в непосредственной близости от цилиндра — камера эта называется впускным коллектором. В системе непосредственного впрыска, однако, воздух и бензин не смешиваются предварительно. Воздух поступает в камеру сгорания через впускной коллектор, в то время как бензин впрыскивается непосредственно в цилиндр. Именно так работает непосредственный впрыск топлива и поэтому он так называется.

Топливо-воздушная смесь в камере сгорания, клапаны, форсунка прямого впрыска и свеча зажигания

Плюсы прямого впрыска топлива

В сочетании с ультраточным управлением с помощью компьютера прямой впрыск обеспечивает более точное управление дозировкой топлива (количество впрыскиваемого топлива) и воздуха. Расположение инжектора также способствует более оптимальному распылению, которое разрушает струю жидкого бензина на более мелкие капельки и превращая его, можно сказать, в пыль. В результате обеспечивается более полное сгорание бензина, что очень важно, когда для сгорания этого выделяется так мало времени на высоких оборотах. Проще говоря, при непосредственном впрыске топлива больше бензина сжигается, что приводит к большей мощности и уменьшению загрязнения в расчёте на каждую каплю бензина.

Минусы непосредственного впрыска топлива

Основными недостатками двигателей с прямым впрыском бензина являются сложность этой системы и, как следствие, её конечная стоимость. Системы прямого впрыска дороже производить, потому что их компоненты должны быть более прочными и точными — они обращаются с топливом при значительно более высоких давлениях, чем косвенные системы впрыска, и, кроме того, сами форсунки должны быть в состоянии выдержать высокую температуру сгорания и разрушительное давление в цилиндре.

Насколько лучше прямой впрыск, чем непрямой?

Для примера, General Motors для автомобилей Cadillac CTS производит два аналогичных двигателя с прямым и косвенным впрыскиванием — 3,6-литровый двигатель V6. Двигатель с непрямым впрыском производит 263 лошадиных силы, в то время как версия с непосредственным впрыском топлива развивает 304 лошадиные силы. Несмотря на увеличенную мощность, двигатель с непосредственным впрыском в то же время более экономичен — 18 миль на галлон против 17 миль на галлон бензина в условиях города и равный расход в условиях трассы. Ещё одно преимущество двигателей с непосредственным впрыском топлива — это то, что в силу особенности своей технологии они менее требовательны к октановому числу бензина.

Технология прямого впрыска далеко не новая — она известна ещё примерно с середины 20-го века. Однако, тогда всего несколько автопроизводителей приняли её для массового производства автомобилей. Тогда, из-за дороговизны производства и отсутствия должного ассистирования компьютера, механический карбюратор был доминирующим в системах подачи топлива — вплоть до 1980-х годов. Тем не менее, давние и непрекращающиеся циклические события, такие как резкий рост цен на топливо и ужесточения в законодательстве по экономии топлива и экологичности выбросов, привели многих автопроизводителей к началу разработки системы прямого впрыска топлива. Вы, скорее всего, будете видеть больше и больше автомобилей, использующих непосредственный впрыск топлива, в ближайшем будущем.

Читать еще:  Что лучше, дизель или бензин? плюсы и минусы, и их отличия. полный обзор

Более того, практически все дизельные двигатели используют прямой впрыск топлива. Впрочем, дизели используют немного другой процесс сжигания топлива: бензиновые двигатели сжимают смесь бензина и воздуха и поджигают его искрой, в то время как дизели сжимают воздух, и только затем распыляют топливо в камеру сгорания, которое воспламеняется от температуры сжатого воздуха и его давления.

За что любят и ненавидят непосредственный впрыск

Бензиновые моторы с непосредственным впрыском топлива автолюбители и специалисты оценивают по-разному: одни считают их примером технологического совершенства, другие бояться как огня и готовы отказаться от них ещё на стадии выбора автомобиля. Разбираемся в особенностях конструкции и выясняем, за что стоит любить и ненавидеть непосредственный впрыск.

В чём отличие схемы с непосредственным впрыском

Бензиновые двигатели внутреннего сгорания с непосредственным впрыском начали массово поступать на отечественный рынок в начале 2000-х годов и к настоящему моменту стали непременным атрибутом любого более-менее современного автомобиля среднего или высшего ценового сегмента. Иными словами, они давно являются данностью и останутся таковой до момента перехода человечества на принципиально иные средства передвижения, коими сейчас большинству экспертов видятся электрокары.

Основным отличием от традиционной системы распределённого впрыска схемы с непосредственным впрыском является то, что бензин в ней подаётся не во впускной коллектор, а прямиком в цилиндры. Таким образом, в камеры сгорания поступает не готовая топливовоздушная смесь, а «живое» топливо, при этом смесеобразование производится в самом моторе.

Зачем это нужно

Вопросом создания систем непосредственного впрыска инженеры озаботились ещё во второй половине XIX века, однако довести до массового серийного производства смогли относительно недавно. Первыми на рынок поступили моторы семейства Mitsubishi GDI, а следом подтянулись и все другие всемирно известные бренды — Volkswagen, GM, Toyota, Mercedes, BMW, Ford, Peugeot/Citroen, Renault, Mazda и даже корейский Hyundai.

Хитрость в том, что схема с непосредственным распределённым впрыском позволяет чрезвычайно тонко и точно управлять процессом смесеобразования и заставлять бензиновый двигатель работать на невероятно бедной топливовоздушной смеси. Если обычные моторы, как правило, функционируют при соотношении бензина к воздуху в пропорции 1:14, то моторы с непосредственным впрыском в некоторых режимах выходят на 1:20 и даже 1:40. Нетрудно догадаться, что это позволяет им сжигать гораздо меньше топлива. При этом настройка процессов смесеобразования в реальном времени и применение сразу нескольких режимов работы повышает мощностные и динамические показатели и улучшает экологичность силового агрегата.

Производители таких движков приводят весьма красноречивые данные: расход топлива снижается в среднем на 20-25%, а тяга и мощность повышаются на 10-15%. И всё это при небольшом литраже, применении систем рециркуляции и дожигания выхлопа, соответствии самым строгим экологическим нормам и возможности использования на ДВС многоступенчатого наддува. Словом, не моторы — сказка!

Технические хитрости

И всё бы ничего, да применение схем непосредственного впрыска тянет за собой невероятно высокие требования не только к конструкции силового агрегата, но также к топливному насосу и качеству горючего, а также смазочным материалам, форсункам и электрике, большинству других жизненно важных узлов и агрегатов автомобиля.

Добиться образования правильной смеси при непосредственном впрыске чрезвычайно сложно. Для этого «мозги» машины снабжаются сразу несколькими программами управления с разным циклом работы и ворохом высокоточных датчиков. А за распыл топлива отвечают специальные вихревые форсунки, работающие при сверхвысоком давлении, для создания которого, в свою очередь, автомобиль оснащается высокопроизводительными топливными насосами, аналогичными тем, что используются в дизельных схемах (если обычные насосы развивают порядка 3-4 атм, то эти обеспечивают 50-130). Разумеется, компоненты таких систем должны быть невероятно технологичными и качественными, рассчитанными на длительный срок службы. Именно соблюдение этих условий позволяет более эффективно распылять топливо, лучше перемешивать его с воздухом и грамотнее распоряжается готовой смесью на разных режимах работы двигателя.

Будучи ненагруженным (к примеру, в режиме холостого хода), двигатель с непосредственным впрыском функционирует в режиме послойного смесеобразования — смесь максимально обедняется, но остаётся достаточно качественной и пригодной для работы. В этом режиме дроссельная заслонка открыта широко, а впускные заслонки находятся в закрытом состоянии. Горючее впрыскивается ближе к концу такта сжатия в область свечи зажигания, где завихряется и легко воспламеняется. Гомогенное смесеобразование позволяет получить мощностную смесь, необходимую при равномерных нагрузках на двигатель и на переходных режимах. При максимальных нагрузках открыты как дроссельная заслонка, так и впускные каналы, а горючее впрыскивается ещё на такте впуска. Одновременно, по возможности, дожигаются и выхлопные газы, что повышает экологические показатели без ущерба для мотора.

Всё это требует доработки геометрии камеры сгорания, повышения степени сжатия до 1:12-14, применения более сложного и дорогого катализатора, высокопроизводительных форсунок с мощными соленоидами, а также высокопроизводительного мультирежимного топливного насоса.

Плюсы и минусы

Главным минусом систем непосредственного впрыска является общее снижение надёжности: даже при незначительных сбоях и поломках какого-либо компонента такой движок начинает «капризничать» — глохнуть, чихать, не выходить на полную мощность, зажигать пиктограмму на приборной панели и всячески намекать владельцу на проблемы.

5 могучих атмосферников, которых больше нет.

Вторым не менее важным недочётом является стоимость такого агрегата — это технически сложное устройство, требующее повышенного внимания и контроля ко всем системам, включая систему питания, зажигания, выпуска и электронику.

Чувствительность к качеству топлива — ещё один жирный минус, с которым готов мириться далеко не каждый автовладелец. Купив машину с системой непосредственного впрыска, вы гарантированно начнёте чрезвычайно тщательно подходить к выбору заправок: заливаться дешёвой горючкой, увы, уже не получится. И дело даже не в том, что таким моторам нужно особое октановое число — некоторые из них давно научились работать даже на 92-м бензине или спирте, — а в содержании в некачественном бензине соединений серы, фосфора, железа и прочих примесей, мешающих нормальной работе ДВС.

Наконец, отпугнуть от покупки машины с таким движком может и высокая стоимость запасных частей и обслуживания. Дешёвыми высокотехнологичные запчасти к ним не бывают, при этом требования к маслам, фильтрам и прочим «расходникам» также повышаются.

Но всё это меркнет на фоне плюсов:

Именно моторы с непосредственным впрыском являются наиболее технологичными, экономичными, лёгкими и тяговитыми. Они идеально подходят для эксплуатации в загруженных мегаполисах (именно в пробочных режимах ДВС с непосредственным впрыском наиболее экономичны), вдобавок они позволяют увеличивать интервал замены масла и обладают увеличенным сроком службы из-за уменьшения нагара (это достигается программно максимально эффективным сжиганием топливовоздушной смеси). Однако всего этого удаётся добиться только при чрезвычайно внимательном отношении к автомобилю и грамотном его обслуживании.

Ссылка на основную публикацию
Adblock
detector